If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49+b^2=196
We move all terms to the left:
49+b^2-(196)=0
We add all the numbers together, and all the variables
b^2-147=0
a = 1; b = 0; c = -147;
Δ = b2-4ac
Δ = 02-4·1·(-147)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*1}=\frac{0-14\sqrt{3}}{2} =-\frac{14\sqrt{3}}{2} =-7\sqrt{3} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*1}=\frac{0+14\sqrt{3}}{2} =\frac{14\sqrt{3}}{2} =7\sqrt{3} $
| a²+5a+6=0 | | 3/4(1/4x+8)-(1/2x+2)=3(4-x)-1/4x | | -2x-10+17=4x+19 | | X+x+1+x+2=333 | | n(n-1)=105 | | (2w+3)(6+w)=0 | | 6400=(8)(24^x) | | 4x+68x-2=0 | | 1,000=2.5c-800 | | H(x)=8x²+2 | | 14y-6y=64 | | (3.9)^x=48 | | Y=2904+121x | | F(5a)=5a+8 | | C=0.10x+12.50 | | (x^2-8x-2)/3=(x^2-3x+2)/2 | | u/9=-39 | | X^2-19x+87=0 | | 2900=-1.84x+212 | | 4(2x)6-2=72 | | X^2-x+(1/4)=x/4 | | Y=3.4x-1.9 | | 2(3w)=2*3 | | X^2-(3x/4)=x/4 | | 2x-3/4-2x-1=x-2/3 | | b2=2b | | 163x=325x-13 | | (6b-7)(b-4)=0 | | 7n(3n+8)=0 | | x+x+1+x+2=339 | | 8(3x-2)-2(x-3)=4(4x+5)+18 | | 10/x=25/15 |